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Realizable spin models are investigated in a superconducting flux qubit system. By adjusting system param-
eters, it is shown that various artificial spin systems can be realized such as the quantum Ising model and the
class of XXZ spin model in the same flux qubit system. The entanglement dynamics of the realizable systems,
especially for the two-qubit system, is discussed by means of their concurrence and fidelity. It is found that an
unentangled input state can evolve to be a maximally entangled output state periodically due to the exchange
interactions induced by two-qubit flipping tunneling processes.
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INTRODUCTION

Much attention have been paid to superconducting qubit
systems1–3 as one of the promising candidates for quantum
information processing and computing. The tunable super-
conducting devices have provided a variety of possibilities to
realize quantum spin models that are not findable naturally.
Recent experiments have shown that different types of ex-
change interactions are observable. Particularly, there have
been demonstrated an Ising-type interaction in two charge
qubits4 and two flux qubits5,6 and an XY-type interaction in
two flux7 and phase qubits.8,9 Moreover, such realizations of
artificial spin systems make it possible to observe entangled
states of two qubits.4,5,8,9 For a capacitively coupled two
phase qubits, a recent experiment9 shows that higher fidelity
for the entanglement is exhibited in an excited level. The
higher fidelity is caused by two-qubit tunneling processes10

between two-qubit states, i.e., flipping both qubits. Such a
two-qubit tunneling process contributes to �tunnel-type� ex-
change interactions between the two artificial spins.

In this paper, we will theoretically investigate a possible
realization of quantum spin models in superconducting flux
qubit systems by varying a system parameter. Especially, we
use a phase coupling by introducing a connecting wire be-
tween the two-qubit loops �see Fig. 1�11,12 because the phase
coupling gives more controllable parameters than the induc-
tive coupling for the manipulation of qubit states. For
coupled charge qubits,4 the Ising-type interaction has been
generated, and for coupled phase qubits,8,9 the tunnel-type
exchange interactions have been demonstrated. However, in
phase-coupled flux qubit systems, both the Ising- and tunnel-
type interactions can be simultaneously generated.10,13 Fur-
ther, such an exchange interaction in flux qubit systems can
be manipulated by controlling the values of system param-
eters. In this study, we numerically calculate both the tunnel-
and Ising-type interaction strengths for three characteristic
parameter regimes. As a result, we show that a flux qubit
system can be an artificial XXZ quantum spin system by
virtue of the present phase coupling scheme. In addition, to
address about the time evolution of an input state for the two
flux qubit system corresponding to quantum spin models, we
introduce the concurrence and fidelity as a function of time

as a measure of entanglement and evolution of the state. It
turns out that an unentangled �entangled� input state evolves
to be an entangled �unentangled� state periodically with a
characteristic period of time.

MODEL

We first consider two coupled superconducting flux qubits
in Fig. 1. The Hamiltonian describing the model is given by
the sum of the charging and Josephson energies,

H���̇i,�̇�,�i,���� = HC���̇i,�̇��� + HJ���i,���� , �1�

where the phases across the Josephson junctions are �i and
their time derivatives are �̇i. The charging energy of Joseph-

FIG. 1. �Color online� A two flux qubit system. The system is
composed of two �left and right� qubit loops. In order to couple the
two flux qubits, we use two connecting superconducting wires
where the Josephson junction EJ� plays the important role for con-
trolling the interaction between the two qubits since the two wires
give the boundary condition as a function of phases ��1

a ,�2
a ,���

from the fluxoid quantization along the closed path through the two
connecting wires. By varying the amplitude of EJ�, the two flux
qubit system can be mapped into a quantum two-spin model. The
state of each qubit loop is in a superposed state of which �↓� and �↑�
represent the diamagnetic and paramagnetic current states, respec-
tively. This schematic of the system show the state �↓↑� that is one
of possible four states. Here, � and � denote the directions of the
magnetic fields, f1�2�=�1�2� /�0, in the qubit loops. EJ1, EJ, and EJ�
are the Josephson coupling energies of the Josephson junctions in
the qubit loops and the superconducting connecting wire, and �’s
are phase differences across the Josephson junctions.
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son junctions in the two-qubit loops and the connecting wire
is given by

HC =
1

2
��0

2�
�2�	

i=1

2

	
���a,b,c�

Ci
��̇i

�2 + C��̇�2� , �2�

where C��C�� are the capacitance of the Josephson junctions
in the qubit �connecting� loops. �0=h /2e is the unit flux
quantum. The Josephson energy of the junctions is given by

HJ = 	
i=1

2

	
���a,b,c�

2EJi
� sin2 �i

�

2
+ 2EJ� sin2 ��

2
, �3�

where EJ’s are the Josephson energy of junctions in the qubit
and connecting loops.

The two current states of a flux qubit can be represented
in terms of pseudospin language, i.e., two orthogonal states
�↑� and �↓�. Then, two-qubit systems can be represented in the
basis ��↑↑�, �↑↓�, �↓↑�, �↓↓��. In the low energy limit, the
Hamiltonian of superconducting flux qubit systems can be
represented in the tight-binding approximation. For two flux
qubit systems, following Refs. 10 and 13, one can write the
two-qubit matrix Hamiltonian in terms of qubit energy lev-
els, single-qubit tunnelings, and two-qubit tunnelings,

H =

E↑↑ − t1 − t1 − t2

a

− t1 E↑↓ − t2
b − t1

− t1 − t2
b E↓↑ − t1

− t2
a − t1 − t1 E↓↓

� , �4�

where E’s are the energies of the Josephson junction loop for
the two-qubit states. t1 and t2 are the single- and two-qubit
tunnelings between the two states of two qubits, originating
from the charging energies HC. Single-qubit tunneling de-
scribes single-qubit flipping for the macroscopic quantum
tunneling between the two states of the two-qubit states, for
example, �↑ ↑ �⇔ �↓ ↑ �. The two-qubit tunneling amplitudes,
�i� t2

a and �ii� t2
b, describe the tunneling processes �i�

�↑ ↑ �⇔ �↓ ↓ � in the parallel pseudospin states and �ii�
�↑ ↓ �⇔ �↓ ↑ � in the antiparallel pseudospin states. The inter-
action between two qubits is controlled by adjusting the Jo-
sephson junction energy EJ� in the superconducting connect-
ing wire12 and the tunneling amplitudes are calculated
numerically using both the Wentzel-Kramers-Brillouin ap-
proximation and the Fourier grid Hamiltonian method.14,15

In fact, the tunneling amplitudes and the low energy qubit
energies are determined by the system parameters of the su-
perconducting flux qubit system. Once the parameters are
adjusted, generally, an artificial spin Hamiltonian is given in
a form from Eq. �4�,

H = 	
j��1,2�

	
���x,y,z�

Bj
�Sj

� + 	
���x,y,z�

J�S1
�S2

�, �5�

where Bj
x=−t1, Bj

y =0, B1
z = �E↑↑+E↑↓−E↓↑−E↓↓� /4, B2

z = �E↑↑
−E↑↓+E↓↑−E↓↓� /4, Jx=−�t2

a+ t2
b� /2, Jy = �t2

a− t2
b� /2, Jz= �E↑↑

−E↑↓−E↓↑+E↓↓� /4, and Sj
�’s are the Pauli matrices. The

single-qubit tunnelings play the role of a transverse magnetic
field Bj

x, while the energy difference of two-qubit levels cor-
responds to the applied magnetic field Bj

z parallel to the z

direction of spins. Note that the x and y components of the
exchange interaction �Jx and Jy� are determined by the two-
qubit tunnelings and the z component of the interaction �Jz�
is the energy difference between the parallel spin state and
the antiparallel spin state. Consequently, Eq. �5� shows that a
kind of XYZ quantum spin model with magnetic fields can be
realizable in the two flux qubit system.13 Compared to the
artificial spin interactions, a recent theoretical study shows
that an unusual type of spin interactions, e.g., S1

zS2
x and S1

xS2
z ,

can be realizable by applying a microwave in a supercon-
ducting qubit system.16

REALIZABLE ARTIFICIAL SPIN SYSTEMS

To manipulate two flux qubits in the model of Fig. 1, one
can vary the energies of Josephson junctions in the connect-
ing wires and the qubit loops. Varying the Josephson ener-
gies of the junctions determines the types of interactions be-
tween the two artificial spins. Three types of artificial spin
models are found as follows.

Case I. For EJ�=0.0EJ and EJ1=0.7EJ, a two-spin Hamil-
tonian can be constructed by the relations of E↑↑=E↑↓=E↓↑
=E↓↓ and t2

a= t2
b= t2. We calculated the numerical values of

the macroscopic quantum tunnelings as t1�0.0075EJ and
t2
a�b��0.00024EJ.

10 Then, from Eq. �5�, the two flux qubit
system can be described by the corresponding spin Hamil-
tonian

H = JS1
xS2

x + B�S1
x + S2

x� , �6�

where B=−t1 and J=−t2. The interaction J between the arti-
ficial spins is originated by the two-qubit tunneling t2 be-
tween the two-qubit states. The Ising-type interaction is zero,
Jz=0. Rotating the coordinates, in which Sx becomes Sz, the

spin model can be transformed to H̃=JS1
zS2

z +B�S1
z +S2

z�. The
transformed Hamiltonian describes the quantum Ising model
with an external magnetic field B.

Case II. When the Josephson energy EJ� increases from
zero,12 the Ising-type interaction Jz of the two flux qubits is
generated. For EJ�=0.1EJ with EJ1=0.57EJ, one finds the re-
lations E↑↑=E↓↓�E↓↑=E↑↓ and t1= t2

b=0. Then, the corre-
sponding spin Hamiltonian for two artificial spins can be
written as

H = J�S1
xS2

x − S1
yS2

y� + JzS1
zS2

z , �7�

where J=−t2
a /2 and Jz= �E↑↑−E↑↓� /2. The numerical values

of the two-qubit tunneling amplitude and the energy differ-
ence between the two states are given by t2

a�0.012EJ and
Jz�−0.1EJ. It is shown that the tunnel-type exchange inter-
action J as well as the Ising-type exchange interaction Jz
appears, while the single-qubit tunneling is suppressed. On
the other hand, the inductively coupled flux qubits can pro-
vide either Ising-type5,6 or tunnel-type exchange
interactions.7 For other types of superconducting qubits, only
the tunnel-type �Ising-type� interaction can be generated in
the phase �charge� qubits by introducing a coupling capaci-
tance.

The Hamiltonian in Eq. �7� describes an anisotropic spin
exchange interaction with J�0 and Jz�0. Interestingly, the
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x and z components of the interaction are antiferromagnetic,
while the y component is ferromagnetic. However, if one
introduces a rotated coordinate for the first qubit such as

ei�1
y
�/2�1

ze−i�1
y
�/2=−�1

z and ei�1
y
�/2�1

xe−i�1
y
�/2=−�1

x, then one

can transform the Hamiltonian H̃=ei�1
y
�/2He−i�1

y
�/2. The

transformed Hamiltonian describes an XXZ quantum spin
model,

H̃ = − J�S1
xS2

x + S1
yS2

y� − JzS1
zS2

z . �8�

This implies that by studying the model of the spin Hamil-
tonian in Eq. �7�, one can study the model of the spin Hamil-
tonian in Eq. �8� within the unitary transformation. Hence,
the flux qubits for the parameters provide a class of general
XXZ quantum spin models. Moreover, applying �1

x rotation
instead of �1

y gives the opposite signs of the interactions in
the two terms in Eq. �8�.

Case III. For the intermediate values of EJ�=0.05EJ with
EJ1=0.7EJ, the single- and two-qubit tunneling amplitudes
are t1=0.0024EJ and t2

a=0.00024EJ, respectively. In this
case, the energy difference is given as Jz=−0.05EJ and the
two-qubit tunnelings is not negligible. Hence, another real-
ization of quantum spin models is possible and its Hamil-
tonian can be written as

H = J�S1
xS2

x − S1
yS2

y� + JzS1
zS2

z + B�S1
x + S2

x� , �9�

where B=−t1, J=−t2
a /2, and Jz= �E↑↑−E↑↓� /2. In addition to

the XXZ spin exchange interaction, it is shown that the
single-qubit tunneling processes play a role of the magnetic
fields. Then, this Hamiltonian describes the interacting two
spins with magnetic fields.

TIME EVOLUTION OF QUANTUM STATES

Let us investigate the time evolution of a prepared quan-
tum state in the realizable spin models. At t=0, any normal-
ized pure state of two qubits �artificial spins� can be written
as

���0�� = a0�↑↑� + b0�↑↓� + c0�↓↑� + d0�↓↓� , �10�

where a0, b0, c0, and d0 are the coefficients of the wave
function. The entanglement can be quantified by the concur-
rence at time t,17

C����t��� = 2�a�t�d�t� − b�t�c�t�� , �11�

where a�t�, b�t�, c�t�, and d�t� are the coefficients of the
wavefunction at time t. The concurrence ranges from 0 �un-
entangled state� to 1 �a maximally entangled state�. To help
understanding the entanglement dynamics, one can define
the overlap between the states at the initial time �input state�
and at a given time t �output state� as the fidelity,

F�t� = ���t����0��� . �12�

If F�T�=1, the output quantum state is the same with the
initial input state at t=T, i.e., the unentangled �entangled�
initial state returns to the unentangled �entangled� state.
Then, for time evolution of quantum states, entanglement
dynamics can be understood from the concurrence and fidel-
ity.

For the quantum Ising model of case I, the concurrence is
given by

C�t� = �C0 + C1 cos 4Jt�1/2, �13�

where C0= ��a0+d0�2− �b0+c0�2�2 /4+ ��a0−d0�2− �b0
−c0�2�2 /4 and C1=−��a0+d0�2− �b0+c0�2���a0−d0�2− �b0
−c0�2� /2. It should be noticed that the concurrence does not
depend on the magnetic field B=−t1, i.e., the single-qubit
tunneling. Only the strength of the Ising interaction deter-
mines the dynamics of entanglement. This can be understood
as follows. In the case of J=0, the spin Hamiltonian becomes

H̃=B�S1
z +S2

z� below Eq. �6�. The input state of Eq. �10� will
precess around the magnetic field with a�t�=a0e−2iBt, b�t�
=b0, c�t�=c0, and d�t�=d0e2iBt. Thus, the concurrence is con-
stant in time. Even for J�0, �JS1

zS2
z ,B�S1

z +S2
z��=0 shows

that the magnetic field does not affect on the time evolution
of the state. As a result, the concurrence is an oscillating
function with respect to the exchange interaction J=−t2 with
the characteristic period of time T=� /2J. At t=2m� /4J
with an integer m, the concurrence reaches its initial value,
C=2�a0d0−b0c0�, while at t= �2m+1�� /4J, C= �a0

2−b0
2−c0

2

+d0
2�.
The fidelity of this quantum spin system is given by

F�t� = �F0 + 	
�=	

F1
� cos 2�B + �J�t + F2 cos 4Bt�1/2

,

�14�

where F0=1− ��a0+d0�2+ �b0+c0�2���a0−d0�2+ �b0−c0�2� /2
− ��a0+d0�2− �b0+c0�2�2 /8, F1

+= �a0+b0+c0+d0�2��a0−d0�2

+ �b0−c0�2� /4, F1
−= �a0−b0−c0+d0�2��a0−d0�2+ �b0−c0�2� /4,

and F2= ��a0+d0�2− �b0+c0�2�2 /8.
For the XXZ spin model of case II, the concurrence is

given by

C�t� = �C0 + 	
�=	

C1
� cos 4�J + �Jz�t + C2 cos 8Jt�1/2

,

�15�

where C0= ��a0+d0�4+ �a0−d0�4� /4+4b0
2c0

2, C1
+=−2�a0

+d0�2b0c0, C1
−=2�a0−d0�2b0c0, and C2=−�a0

2−d0
2�2 /2 and the

fidelity is

F�t� = �F0 + 	
�=	

F1
� cos 2�J + �Jz�t + F2 cos 4Jt�1/2

,

�16�

where F0=1−2�a0
2+d0

2��b0
2+c0

2�− �a0
2−d0

2�2 /2, F1
+= �a0

+d0�2�b0
2+c0

2�, F1
−= �a0−d0�2�b0

2+c0
2�, and F2= �a0

2−d0
2�2 /2.

This shows that the concurrence and fidelity have a similar
dynamic property. However, the fidelity has twice longer pe-
riod than the concurrence. The reason is as follows: if we
consider only the term JzS1

zS2
z in Eq. �8� for simplicity, the

state, ���t��, evolves as a�t�=a0e−iJzt, b�t�=b0eiJzt, c�t�
=c0eiJzt, and d�t�=d0e−iJzt. Thus, the state ���t�� and fidelity
oscillate as e2iJzt, but the concurrence, C�t�=2�a�t�d�t�
−b�t�c�t��, as e4iJzt.

In case III, the expressions of the concurrence and fidelity
are too lengthy to display. One can find that the external field
does not commute with the exchange interactions, i.e.,
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�−JS1
yS2

y +JzS1
zS2

z ,B�S1
x +S2

x���0. Then, the shape of concur-
rence deforms depending on the external field B.

In Fig. 2, we plot the concurrences and fidelities as a
function of time t and the initial state parameter 
 to give the
comparison of entanglement dynamics between the different
spin models for the same initial state ���0��=cos 2�
�↑ ↑ �

+sin 2�
�↓ ↓ �. Explicitly, the different values of system pa-
rameters controlling the two flux qubits are given in the cap-
tions of the figures. For the time evolution of the initial state,
it is shown that the unentangled �entangled� state can become
an entangled �unentangled� state even though the specifica-
tions of the superconducting devices are different to each
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FIG. 2. �Color online� Time evolutions of the concurrence C�t ,
� and the fidelity F�t ,
� for the input state ���0��=cos 2�
�↑ ↑ �
+sin 2�
�↓ ↓ � at the coresonance point �1=�2=0.5�0 in the two superconducting flux qubit system. �a,b� Case I. For EJ�=0.0EJ and
EJ1=0.7EJ, the two flux qubit system corresponds to the spin Hamiltonian H=JS1

xS2
x +B�S1

x +S2
x� with the exchange interaction J=−t2

a and the
magnetic field B=−t1. The single- and two-qubit tunneling amplitudes are given by t1=0.0075EJ and t2=0.000 24EJ. The characteristic
period of time is T1=� /2J for the concurrence. �c,d� Case II. For EJ�=0.6EJ and EJ1=0.7EJ, the two flux qubit system maps into the spin
Hamiltonian H=J�S1

xS2
x −S1

yS2
y�+JzS1

zS2
z with the exchange interactions J=−t2

a /2 and Jz= �E↑↑−E↑↓� /2. The two-qubit tunneling amplitude is
t2
a=0.000 24EJ and the energy difference between the two states is Jz=−0.425 045EJ. The period of time is T2 /2 with T2=� /2J. The fidelity

has twice the period of the concurrence. �e,f� Case III. For EJ�=0.05EJ and EJ1=0.7EJ, the two flux qubit system is described by the spin
Hamiltonian H=J �S1

xS2
x −S1

yS2
y�+JzS1

zS2
z +B�S1

x +S2
x� with the magnetic field B=−t1 and the exchange interactions J=−t2

a /2 and Jz= �E↑↑
−E↑↓� /2. The single- and two-qubit tunneling amplitudes are t1=0.0024EJ and t2

a=0.000 24EJ and the energy difference becomes Jz=
−0.05EJ. The characteristic period of the time evolutions is T3=0.68� /2J. The fidelity has twice the period of the concurrence.
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other. In Fig. 2�a�, for example, the state becomes maximally
entangled with C=1 at t= �2m+1�� /4J. Further, for the spe-
cial case that 
= �2n+1� /8 with integer n, the concurrence in
Eq. �13� results in C�t�=1: the state is always maximally
entangled, while the fidelity is oscillating in time.

Although we have discussed about the two coupled qubit
case so far, it is possible to couple many qubits to form a
one-dimensional spin chain. By performing a coordinate
transformation similar to that in the above of Eq. �8� for a
sublattice, the coupled qubit array will be described by the
XXZ spin chain Hamiltonian. Then, we can obtain and simu-
late an artificial XXZ spin chain model.

SUMMARY

A two superconducting flux qubit system has been con-
sidered to investigate a possible realization of quantum spin

models. The phase-coupled flux qubits can provide both the
Ising- and tunnel-type interactions between two qubits, re-
sulting in the class of XXZ quantum spin model. The artifi-
cial quantum Ising and XXZ spin models were demonstrated
by varying controllable system parameters. Further, we dis-
cussed the entanglement dynamics of the artificial spin mod-
els in the specific parameter values of the two superconduct-
ing flux qubit system. It was found that a certain class of
input unentangled �entangled� state can become a maximally
entangled �unentangled� state irrespective of the specifica-
tions of the superconducting devices. Such a maximally en-
tangled state should be observable experimentally.
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